用 PC-1500 计算机计算单台 近震参数的程序

徐 扬

(太原基准台)

本程序可以用于台站计算近震和地方震参数,使用时只要输入 \overline{P} 、 \overline{S} 到时以及两个水平向的最大振幅 $Y_{(N-S)}$, $Y_{(E-W)}$ 和相应的周期 $T_{(N-S)}$, $T_{(E-W)}$ (在三个分向初动**清楚的**情况下,还要输入垂直向初动方向,以及两水平向初动的振幅和相应的周期,以便确定方位角),即可自动完成除震源深度之外的一般地震参数计算,并打印出结果。

程序如下:

- 10: "A": CLEAR
- 15: COLOR 1: CSIZE 1
- 20: INPUT "MONTH", MH, "DAY", DY
- 30: INPUT "CORR": CR. "No": NO
- 35: LPRINT "TAIYUAN"; TAB 9; "DD1"; TAB 14; "1984"; MH; DY
- 40: LPRINT "CORR = "; CR; "ms"; TAB 17; "No = "; NO
- 45: INPUT "PH"; PH. "PM"; PM, "PS"; PS
- 50: INPUT "SH"; SH, "SM"; SM, "SS"; SS
- 60: INPUT "Y(N-S)"; YN, "T(N-S)"; TN
- 70: INPUT "Y(E-W)", YE, "T(E-W)", TE
- 80: LF 1: COLOR 2
- 90: LPRINT "P = "; PH; TAB 6; PM; TAB 10: PS
- 100: LPRINT "S = "; SH; TAB 6; SM; TAB 10; SS
- 110: IF PH()SH + 23 LET SP = 3600 * (SH PH) + 60 * (SM PM) + SS PS:

 GOTO 150
- 120: SP = 3600 + 60 * (SM PM) + SS PS
- 150: IF $SP(7LET D = 0.126 * SP ^2 + 7.224 * SP + 0.1; GOTO 180$
- 160. IF (SP > = 7) * (SP < 10) LET D = 8.3 * SP 1.2. GOTO 180

- 170: IF $(SP > = 10) * (SP < 30) LET D = 0.01235 * SP ^ 2 + 8.09235 * SP 0.387$
- 180: IF SP<10LET TP=1.366*SP+0.033: GOTO 230
- 190: IF $(SP > = 10) * (SP < 30)LET TP = 0.00059524 * SP <math>^2 + 1.3399 * SP + 0.2694$: GOTO 230
- 200: IF (SP > = 30) * (SP < 34)LET D = 8.86 * SP 12.17: TP = 1.375 * SP 0.3: GOTO 230
- 210: D = 8.50 * SP: TP = 8.5 * SP/6.21
- 230: D = INT (D * 10 + 0.5)/10
- 240: LPRINT"S P = "; SP; TAB 17; "DIS = "; D; "km"
- 250: TP = INT(TP * 10 + 0.5)/10
- 260: K = INT ((60 + TP PS 1E 6)/60)
- 270: IF PM > = KLET OH = PH: OM = PM K: OS = 60 * K + PS TP: GOTO 290
- 280: IF (PH = 0) * (PM < K)LET OH = 23; OM = 60 + PM K; OS = 60 * K + PS TP; GOTO 290
- 285: OH = PH 1. OH = 60 + PM K. OS = 60 * K + PS TP
- 290: LPRINT "O = ", OH, TAB 6; OM; TAB 10; OS: TAB 17; " $T_P = "$, T_P
 - 300: GOSUB 680
 - 310: LPRINT "Vn ="; VN; "E2"; TAB 17; "Ve ="; VE: "E2"
 - 320: AN = 10 * YN/VN: AE = 10 * YE/VE
 - 330: AN = INT (AN * 100 + 0.5)/100: AE = INT (AE * 100 + 0.5)/100
 - 350: LPRINT "Yn = "; YN; TAB 11; "Tn = "; TN: TAB 23; "An = "; AN
 - 360: LPRINT "Ye = "; YE; TAB 11; "Te = "; TE; TAB 23; "Ae = "; AE
 - 370: IF D<20LET R = 0.02 * D + 1.7: GOTO 460
 - 380: IF (D > = 20) * (D < 35)LET R = 0.04 * D + 1.3; GOTO 460
 - 390: IF (D > = 35) * (D < 60) LET R = 0.02 * D + 2: GOTO 460
 - 400: IF (D > = 60) * (D < 90) LET R = 6.00667 * D + 2.75; GOTO 460
 - 410: IF (D > = 90) * (D < 130) LET R = 0.005 * D + 2.9; GOTO 460
 - 420: IF (D > = 130) * (D < 370) LET R = (0.005 0.1/60) * D + 3.084: GOTO 460
 - 430: IF (D > 370) * (D < 550) LET R = 0.00125 * D + 3.863; GOTO 460
 - 440: IF (D > = 550) * (D < 700) LET R = 0.001 * D + 3.95: GOTO 460
 - 450: R = 0.000667 * D + 4.19
 - **460.** M = LOG ((AN + AE)/2) + R
 - 470: M = INT (M * 10 + 0.5)/10
 - 490: MS = INT ((1.13 * M 1.08) * 10 + 0.5)/10
 - 500. LPRINT "ML =", M. TAB 17, "Ms = ", MS

- 510. INPUT "VP": VP
- 520: INPUT "IP(N-S)"; PN, "IT(N-S)"; TN
- 530: INPUT "IP(E-W)"; PE, "IT(E-W)"; TE
- 540. GOSUB 680
- 550: IF VP< 0 THEN 590
- 560: IF (PE > = 0) * (PN < = 0) THEN 610
- 570: IF (PE < = 0) * (PN < = 0) THEN 620
- 580: GOTO 630
- 590: IF (PE < = 0) * (PN > = 0) THEN 610
- 600: IF (PE > = 0) * (PN > = 0) THEN 620
- 605: GOTO 630
- 610: C = 360: GOTO 640
- 620: C = 0: GOTO 640
- 630: C = 180
- 640: G = (PE/VE)/(PN/VN)
- 650. DEGREE: A = INT((C + ATN G) + 0.5)
- 660: LPRINT "ALFA = ", A, "(o)"
- 670: END
- 680: RESTORE
- 690. READ X, VN
- 700: IF X(>TN THEN 690
- 780: IF TE>0.8 THEN 840
- 790. RESTORE 895
- 800: READ Y, VE
- 820: IF Y<>TETHEN 800
- 830: GOTO 880
- 840: RESTORE 900
- 850: READ Y, VE
- 870. IF Y()TE THEN 850
- 880: RETURN
- 885: DATA 0.05, 121, 0.1, 174, 0.2, 192, 0.3, 197, 0.4, 200, 0.5, 204, 0.6, 208, 0.7, 208, 0.8, 202
- 890: DATA 0.9, 189, 1, 168, 1.2, 120, 1.4, 80.1, 1.6, 54.1, 1.8, 37.8, 2, 26.8, 2.5, 12.7, 3, 6.62
- 895: DATA 0.05, 136, 0.1, 168, 0.2, 174, 0.3, 176, 0.4, 176, 0.5, 180, 0.6,183, 0.7, 182, 0.8, 176
- 900: DATA 0.9, 162, 1, 143,1.2, 101, 1.4, 66.5, 1.6, 44.3, 1.8, 30.6, 2, 21.5, 2.5, 9.83, 3, 5.11

程序说明

- 1. 第 35 条程序中的"TAIYUAN"(太原)为台站名称。使用时修改为所在台站的名称。
- 2. 第150至210条为计算震中距 D和 P 走时的程序,其计算结果以山西省地震局规定的区域走时表为准。因该走时曲线为一非线性曲线,故程序中将走时曲线的函数关系 D (\overline{S} \overline{P}) 和 $T_{\overline{P}}$ (\overline{S} \overline{P}) 分为几段,分别用一次或二次曲线近似代替,其计算结果震中 距 D和 \overline{P} 走时 $T_{\overline{P}}$ 与查表结果比较,绝对误差 \leq 0.1。如采用其它走时曲线,则应对程序第150至210条酌情修改。

表 1

提示 显示	输 入 数 据
NO	参数表编号
MONTH	月
DAY	Я
CORR	钟
PH	P波到时的时
РМ	P波到时的分
PS	P波到时的砂
SH	S波到时的时
SM	S波到时的分
SS	S波到时的砂
Y(N-S)	N-S向最大
T(N-S)	对应Y(N-S)的周期
Y(E-W)	E-W向最大振幅
T(E-W)	对应Y(E-W)的周期
V P	U-D向的初动方向
IP(N-S)	N-S向的初动振幅
IT(N-S)	对应 IP(N—S)的周期
IP(E-W)	E-W向的初动振幅
IT(E-W)	对应IP(E-W)的周期

- 3.程序第885至900条为太原台 DD-1 短周期地震仪实际工作的放大倍数。其中885 和890条为N—S向,895 和900条为 E—W向。在每一条中,周期和对应的放大倍数是成对放置的。修改时只需对后者进行修改。另外要注意的是放大倍数要以实际工作的放大倍数除以100后放入程序。放大倍数的打印结果为V=A×10²。
- 4. 在程序运行时,显示屏上将依次显示输入数据提示。提示所对应输入的数据见表1。

 $\overline{P} = 11 - 12 - 13.1$

 $\overline{S} = 11 - 12 - 19.7$ Y (N-S) = 11.1, T (N-S) = 0.4 Y(E-W) = 10.2, T(E-W) = 0.4 Vp>0 IP(N-S) = -3.1 IT(N-S) = 0.2 IP(E-W) = 2.8 IT(E-W) = 0.2

整个操作步骤见表 2。

表 2

步号	输	入	显	示	备	注	步号	輸	λ	显	示	备	注
1	DEF	A	MON	ТН	l	方位角 VP 向	11	19.7	ENTER	Y(N-	-S)		
2	DEF	ENTER	DAY		上,则	输入一	12	11.1	ENTER	T(N-	-S)		
3	20	ENTER	CORR		_	0 的数 8 按 键	13	0.4	ENTER	Y(E-	-W)		
4	3	ENTER	ИО		ENTE 输入0)	R表示 类点	14	10.2	ENTER	T(E-	-W)		
5	1	ENTER	РН			輸入一	15	0.4	ENTER	VP			
6	11	ENTER	РМ		任意 st IP (N-	5 数。 -S)和	16	E	ITER	IP(N-	_S)		
7	12	ENTER	PS		IP (E- 的方向)	l l	17	-3.1	ENTER	1T()-	_S)		
8	13.1	ENTER	SH	ļ	属值的]	E负决	18	0.2	ENTER	IP(E-	-w)		
9	11	ENTER	SM		定。向上 向下为1	- !!	19	2.8	ENTER	IT(E-	-w)		
10	12	ENTER	SS				20	0.2	ENTER				

最终打印结果见表 3 其中:

P、S分别表示**P**, **S**DIS表示震中距,
ALFA表示方位角,
E2表示10²
脚标n表示N-S向,
e表示E-W向。

如不计算方位角,操作进行到第15步时完毕。

表 3

TAIYUAN DD1 1984 11 20 CORR = 3msNo = 1 $P = 11 \quad 12 \quad 13.1$ S = 11 12 19.7 $S = P \approx 6.6$ DIS = 53.3kmO = 11 12 4.1 Tp = 9 $V_n = 200E2$ $Ve = 176 E_2$ $Y_n = 11.1$ $T_n = 0.4$ $A_n = 0.56$ Ye = 10.2 Te = 0.4 Ae = 0.58ML = 2.8Ms = 2.1ALFA = 315(o)

(1984年5月28日收到初稿)